Blogi

Blogi

Menneitä ja tulevia askeleita

AnalytiikkaÄlyn hankekautta on jäljellä nyt vajaa vuosi. Kokoonnuimme hanketoimijoiden kanssa tammikuun lopuksi Turkuun katsastamaan hankkeen ajankohtaisia kysymyksiä. 

Tähän mennessä hankkeen puolentoista vuoden toimintakauden aikana on ehtinyt tapahtua jo paljon. Työ alkoi syksyllä 2018 opiskelijoiden ja henkilökunnan käyttäjätarpeita kartoittavilla työpajoilla, joita järjestettiin hankeyliopistoissa pitkin maata. Työpajoja seurasi keväällä 2019 kysely, jolla edelleen täydennettiin tietoja analytiikan tarpeista.  

Kerätyn tiedon pohjalta on alettu tuottamaan hankkeen omaa AnalytiikkaÄly-sovellusta sekä analytiikkatyökaluja Oulun yliopiston omaopettajille. Lisäksi analytiikan käyttöä varten on tehty selvitystyötä analytiikan juridisista kysymyksistä, yliopistotason policy-työstä, riskien tunnistamisesta sekä analytiikan käytöstä ennustamisessa

Turun tapaamisessa fokus oli seuraavissa askeleissa, joissa painottuu erityisesti käynnissä oleva sovelluskehittäminen ja sen pilotointi. Alkaneen vuoden aikana pääsemme tosissaan pilotoimaan hankkeen sovellusta. Keväällä aloitamme sovelluksen opiskelijanäkymästä ja syksyn puolelle pilotoitavaksi saadaan ohjaajien ja johdon näkymät. Pilotointeihin haetaan testaajia eri korkeakouluista ja niistä tiedotetaan kohderyhmiä, kun ne tulevat ajankohtaisiksi. 

Haluamme myös jakaa hankkeen tuloksia laajemmalle yleisölle ja yhtenä kanavana tähän tulemme toteuttamaan vuoden 2020 aikana kolme webinaaria. Aiheet sekä ajankohdat näet alta ja tarkempia linkkejä kannattaa odotella näiltä sivuilta sekä hankkeen somekanavilta. 

  • Tietosuojaperiaatteet, riskiarvio ja vaikutustenarviointi, 21.4.2020 klo 14-15 
  • AnalytiikkaÄly-sovellus, Student Dashboard, 27.5.2020 klo 13-14 
  • Opintopolku palvelupolkuna – analytiikan näkökulmia, 18.8.2020 klo 13-14 

Lisäksi Oulun Pedaforumin yhteydessä 19.8.2020 järjestetään avoin oppimisanalytiikan verkostotapaaminen. Tervetuloa mukaan! 

Janne Mikkola 

Turun yliopisto 

Blogi

Oppimisanalytiikan riskien tunnistaminen

Oppimisanalytiikalle on tyypillistä, että sen avulla kerätään monin eri tavoin ja hyödynnetään eri yhteyksissä opiskelijan toiminnasta syntyvää tietoa ilman, että opiskelijan tarvitsee joka vaiheessa tietoisesti ja aktiivisesti sitä tuottaa. Yliopiston on henkilötietoja käsittelevänä rekisterinpitäjänä arvioitava oppimisanalytiikan tietojen käsittelyyn liittyviä riskejä niiden hallitsemiseksi sekä henkilötietojen asianmukaisen käsittelyn varmistamiseksi.

AnalytiikkaÄly-hankkeen osana toteutetussa selvityksessä Oppimisanalytiikka ja opiskelijatietojen käsittely yliopistossa (Ouli, J. & Voutilainen, T. 2019) on tarkasteltu monipuolisesti eri oikeudellisia kysymyksiä oppimisanalytiikan käytöstä yliopistokoulutuksessa erityisesti yliopisto-opiskelijan näkökulmasta. Raportin liitteenä on myös oppimisanalytiikan näkökulmasta muokattu yksinkertaistettu riskiarviomalli tietojen käsittelyn riskien arviointiin erilaisille oppimisanalytiikan käyttötapauksille. Olemme valmistelleet tämän mallin pohjalta erillistä työvälinettä riskiarvion toteuttamiseksi, joka on tarkoitus julkaista ohjeistuksineen verkossa avoimesti käytettäväksi. Julkaistavan työvälineen muotoa hiotaan vielä. Valmistelun haasteellisuutta on lisännyt se, että uudenlaisen teknologian ohella asiaan liittyvä lainsäädäntö on osittain suhteellisen tuoretta. Tästä johtuen ohjeistuksia tai käyttötapauksia asiaan on melko vähän löydettävissä.

Oppimisanalytiikan riskien arvioinnissa omat haasteensa luovat myös painotuksiltaan erilaiset riskitekijät. Esimerkiksi yksi merkittävä riskitekijä on se, mikäli analytiikan käytön yhteydessä tehdään opiskelijaa koskevia automaattisia päätöksiä. Nimittäin Oulin ja Voutilaisen selvityksen perusteella ei ole olemassa lainsäädäntöä, joka mahdollistaisi automaattisen päätöksenteon hyödyntämisen oppimisanalytiikan käyttötapauksissa. Samankaltaisia asioita on noussut julkiseen keskusteluun myös koskien Kelan ja verottajan automaattisia päätöksiä.

Hankkeessa valmisteltava riskiarvion työväline ei automaattisesti vastaa siihen kysymykseen, onko rekisterinpitäjän toteutettava tietosuoja-asetuksen mukainen vaikutuksenarviointi. Se kuitenkin antaa oppimisanalytiikan erityiskysymyksiin sovelletun pohjan ja nostaa esille keskeiset pohdittavat riskit ja näkökulmat, joita joka tapauksessa on tietosuoja-asetuksen riskiperusteisen näkökulman mukaan arvioitava.

On myös huomattava, että vaikka tietojen käsittely riskiarvion näkökulmasta olisi oppimisanalytiikan käytössä hyvällä mallilla, on erikseen tarkasteltava myös sitä, toteutetaanko sitä eettisesti kestävin käytännöin ja perustein ja minkälaiset periaatteet analytiikan käyttöön hyväksytään ja miten eri tahojen vastuut toiminnassa määritellään. Lisäksi on huomattava Oulin ja Voutilaisen selvityksen perusteella se, että oppimisanalytiikkaa ei voida kehittää yliopistoissa pelkästään tietosuojalainsäädännön näkökulmasta, koska toimintaan vaikuttaa kansallisen liikkumavaran puitteissa yleishallinto-oikeudellinen sääntely, joista keskeisimpiä ovat hallintolaki, julkisuuslaki ja tiedonhallintalaki sekä erityislakina yliopistolaki.

Erikoissuunnittelija Tommi Haapaniemi, Opintopalvelut
Projektitutkija Meri Sariola, Oikeustieteiden laitos

Itä-Suomen yliopisto

Blogi

Läpinäkyvää analytiikkaa eri käyttäjäryhmille

Analytiikkaälyn käyttäjätarvekyselyissä lähdettiin liikkeelle arkihavainnosta, että oppimisanalytiikka ja sen käyttäminen ei ole termeinä tuttu opiskelijoille tai edes henkilökunnalle. Vastaajille oli toki selvää, että erilaisissa rekistereissä on tietoa opiskelijoista, opinnoista ja koulutuksista, mutta varsinaisesti oppimisanalytiikka ei ole käsitteenä erityisen tuttu. Esimerkiksi Tampereen yliopistossa ei ole toimintoa “oppimisanalytiikka”. 

Hankkeessa toteutettiin käyttäjätarvekyselyitä keväällä 2019 kuudessa partneriyliopistossa. Kyselyitä oli yhteensä viisi ja ne oli kohdistettu eri käyttäjäryhmille: opiskelijoille, opettajille, tutoropettajille/omaopettajille, opintokoordinaattoreille sekä koulutuksesta vastaaville. Kyselyyn vastasi 183 opiskelijaa ja 170 henkilökuntaan kuuluvaa henkilöä. Eri käyttäjäryhmille suunnatuilla kyselyillä saatiin selville, minkälaisia opiskeluun liittyvän analyyttisen tiedon hyödyntämisen tarpeita eri käyttäjäryhmillä on. Rikasta aineistoa saatiin erityisesti avoimista kysymyksistä, joissa selvitettiin, miten yliopiston tulisi hyödyntää rekisteridataa sekä minkälaisia eettisiä kysymyksiä liittyy rekisteridatan hyödyntämiseen. Avoimia vastauksia kertyi hyvin, sillä noin puolet vastaajista vastasi myös näihin avoimiin kysymyksiin. 

Sekä opiskelijat että henkilökunta olivat erityisen yksimielisiä opiskeludatan hyödyntämisestä yliopistossa. Reilu puolet vastaajista kertoi avoimissa vastauksissa toivovan yliopiston hyödyntävän rekisteridataa opetuksen suunnitteluun ja kehittämiseen. Eettisiä kysymyksiä käsittelevissä vastauksissa sen sijaan nousi esiin erilaisia näkemyksiä eri käyttäjäryhmillä. Opiskelijat pitivät mm. ohjeistusta, läpinäkyvyyttä, tietojen vaikutusta ja väärinkäyttöä sekä arkaluonteisen tiedon käyttöä suurimpina eettisinä ongelmina. Henkilökunta piti pitkälti näitä samoja asioita eettisinä ongelmina, mutta henkilökunnan joukossa oli yllättävän monta henkilöä (13,8 % kysymykseen vastanneista), joiden mielestä rekisteritiedon hyödyntämiseen ei liity lainkaan eettisiä ongelmia. Tämä oli mielenkiintoinen tutkimustulos, sillä kysymykseen ei oltu annettu valmiita vastausvaihtoehtoja vaan jokainen vastaaja sai kirjoittaa omia näkemyksiään siitä, mitä eettisiä kysymyksiä rekisteritiedon hyödyntämiseen liittyisi. 

Opiskelijoiden ja henkilökunnan poikkeaviin näkemyksiin lienee selityksenä asian lähestyminen eri näkökulmista. Opiskelijat eivät välttämättä ole täysin sisäistäneet analytiikan tarjoamia mahdollisuuksia heidän opintojensa tai yleisen yliopistonhallinnon vinkkelistä. Henkilökunnalla saattaa taas olla hyvin välineellinen suhtautuminen oppimisanalytiikan hyödyntämiseen. Opiskelijalle oman datan luovuttaminen on myös henkilökohtainen asia, henkilökunta näkee opiskelijat kuitenkin osittain myös kasvottomana massana. Mitään varsinaista ristiriitaa asiassa ei kuitenkaan ole, vaan ne edustavat analytiikan eri puolia esimerkiksi yksityisyyttä ja tuottavuutta. Tärkeintä lienee se, että eri toiminnallisuudet ja niiden merkitys on tarkkaan mietitty, eettisesti perusteltu ja kaikkien osapuolten hyväksyttävissä. Tulosten perusteella oppimisanalytiikassa riittää vielä runsaasti tehtävää. Käyttäjille tulee tarjota koulutusta yleisesti analytiikasta sekä erityisesti erilaisten palvelujen ja sovellusten käyttöön. Tähän yhteyteen tulisi liittää myös keskustelu analytiikan eettisestä käyttämisestä ja analytiikan pelisäännöistä. 

Hanna Lindsten

Jussi Okkonen

Tampereen yliopisto

Blogi, featured

Analytiikka ohjauksen tukena

Oulun yliopistossa omaopettajat (HOPS-opettajat, opettajatuutorit) toimivat opiskelijan opintojen etenemisen tukijoina ja opintopolkujen ohjaajina. Omaopettaja on opiskelijalle tärkeä lähikontakti yliopisto-opintoihin ja hänen tehtäviinsä kuuluvat esimerkiksi opiskelijan tukeminen henkilökohtaisen opintosuunnitelman laatimisessa, opintojen etenemisen seuranta sekä opiskelijan ohjaus opintojen etenemiseen ja uravalintoihin liittyvissä asioissa. Omaopettajat ovat tyypillisesti saman tieteenalan lehtoreita, yliopisto-opettajia tai tutkijoita ja hoitavat omaopettajan tehtäviä oman työnsä ohella. 

Osana AnalytiikkaÄly -hanketta Oulun yliopistossa on kehitteillä  omaopettajille analytiikkatyökaluja, jotka helpottavat omaopettajan yksittäisen opiskelijan opintojen etenemisen seurantaa reaaliajassa. Kehitteillä olevien visualisointien tavoitteena on antaa omaopettajalle selkeä käsitys opiskelijan edistymisestä suhteessa opiskelijan omiin suunnitelmiin. Työkaluja voidaan hyödyntää esimerkiksi ohjaustilanteeseen valmistautumisessa, ohjaustilanteen aikana sekä yleisemmin opintojen seurannassa. Samalla kun kehitämme uusia oppimisanalytiikan työkaluja, tutkimme ja kehitämme myös käytäntöjä, joissa tietoa voidaan hyödyntää. Pelkkien työkalujen olemassaolon lisäksi tarvitsemme ymmärrystä siitä, kuka työkaluja käyttää, millaisiin tarkoituksiin ja missä tilanteissa.

Oulussa testataan seuraavaksi opintojen etenemistä visualisoivan työkalun toimivuutta toisen vuoden opiskelijan ja omaopettajan välisessä ohjauksessa. Tarkoituksena on selvittää, miten kehitetty työkalu toimii tietoa välittävässä ja keskustelua pohjustavassa roolissa, kun tavoitteena on miettiä yhdessä opiskelijan kanssa opintojen etenemistä ja opiskelijan omia tavoitteita opintojen suhteen. Yksi pilottitutkimuksen olennainen osa on luoda molemmille käyttäjäryhmille ohjeita ja opastusta uusien työkalujen käyttöön ohjauksen tukena. Samalla kun keräämme palautetta näkymien ymmärrettävyydestä ja mielekkyydestä, saamme tietoa erilaisten käyttäjien kokemuksista työkalun parissa. Jotta teknologian käyttöönotto olisi pysyvää, on sen käyttöympäristön ymmärtäminen olennaista.

Opiskelijan näkökulmasta on tärkeää kehittää työkaluja, jotka osana ohjaus- ja opiskelukäytäntöjä tukevat heitä opiskeluun ja sen suunnitteluun liittyvien valintojen tekemisessä. Opiskelijan ja omaopettajan yhteisiä ohjaustapaamisia ajatellen on tärkeää, että kehitettävät visualisoinnit ja työkalut edistävät laadukkaan vuorovaikutuksen muodostumista opiskelijan ja ohjaajan välille, teknisen tarkastelun tai tiedon kaivamisen sijasta. Tällöin kehitetyt työkalut auttavat merkityksellisten kohtaamisten syntymistä aidoissa vuorovaikutustilanteissa. 

Tekstin kirjoittivat

Anni Silvola ja Riku Hietaniemi, Oulun yliopisto

Blogi, featured

Opintojen etenemisen ennustaminen muuttuvassa osaamistavoitteiden ympäristössä

Kenelle ennustamme

Aika usein olemme nähneet ”ennustemalleja”, jotka kykenevät kuvaamaan tapahtumia vuosia, jopa vuosikymmeniä taaksepäin. Tiedämme varsin tarkkaan opiskelijajoukon tai vuosikurssin valmistuttua, kauanko valmistumiseen vaadittavat opinnot kestivät, mikä oli suoritettujen opintojen keskiarvo tai kyseisen vuosikurssin drop-out –rate. Kun tällaista dataa on tarpeiksi paljon, muodostamme keskiarvojen keskiarvoja, joita käyttäen kuvittelemme voivamme ennustaa tulevien opiskelijoiden etenemistä, johtamaan koulutusohjelmia tai tukemaan opintojen ohjausta. Todellisuudessa olemme kuitenkin hukanneet yksilön, jonka etenemistä meidän tulisi tarkastella ja samalla unohtaneet, että todellisessa ennustemallissa tulisi käsitellä opintojaan aloittavia uusia yksilöitä.

Monesti opintojen ennustemalleja suunnataan työkaluiksi opintojen ohjaamiseen, koulutusohjelmien johtamiseen tai yliopistotasoisen rahoitusmallin työkaluksi. Hieman yllättäen saattaa unohtua asiakkaan eli yksilöllisen opiskelijan tarvitseman ennustemallin tuottama tuki ja vielä useammin unohtuu ennustemallin hyödyntäminen loppukäyttäjän näkökulmasta: ennustemallin tulisi kyetä tuottamaan luotettavaa tietoa koulutustuotteiden kehittämiseksi siten, että valmistuvia opiskelijoita tarvitseva teollisuus saisi oikealla ja ajantasaisella osaamisprofiililla varustettuja asiantuntijoita käyttöönsä. Kun nykyisin ennustamme opintojen etenemistä, keskitymme ehkä liikaa tuotettuihin opintopisteisiin, valmistuvien määriin, opiskelun kestoon tai aiheutuneisiin opetuksen kustannuksiin. Hyvä ennustemalli kykenisi nostamaan näiden lisäksi esille osaamisprofiilin tarvitsemia muutoksia ja se huomioisi myös loppukäyttäjän. Aivan uuden haasteen luovat yleistyneet monimuoto- ja etäohjelmat, joissa opiskelijat etenevät digitaalisissa ympäristöissä oman aikataulunsa mukaisesti ja joiden sisältöjä voidaan päivittää reaaliaikaisesti missä kohtaa kalenterivuotta tahansa. Riippumatta oppimisympäristöstä ennustemallin tulisi kyetä ottamaan huomioon, että joku tarvitsee nämä valmistuvat opiskelijat!

Tukeeko järjestelmä toimintaamme vai ohjaako järjestelmä tekemistämme

Varsin klassinen kysymys tietojärjestelmiä kehitettäessä on, kuinka paljon joustavuutta järjestelmässä tulisi olla, jotta se soveltuisi erilaisten käyttäjien tarpeisiin? Puhtaasti analytiikan ja tilastollisen tarkastelun näkökulmasta tiukasti sääntöpohjainen ja lukittu järjestelmä olisi helpoin, mutta opintojen etenemistä kuvaavan ennustemallin kohdalla on ainakin kaksi isoa muuttujaa, jotka vaativat järjestelmältä joustavuutta. Ensinnäkin opiskelija taustoineen ja elämäntilanteineen on yksilö, joka joka tapauksessa etenee omia polkujaan. Toiseksi ennustemallin runkona olevat tutkintorakenteet ja niihin sisältyvät opintojaksot ainakin toivottavasti kehittyvät edellä mainitun loppukäyttäjän tarpeiden mukaisesti. Tämän vuoksi ennustemallin taustalla oleva järjestelmän tulee sallia ja tunnistaa monenlaista joustavuutta, joka koskee yksilön tekemiä valintoja, tutkintorakenteiden muutoksia ja päivityksiä, muuttuvalaajuksisia opintojaksoja sekä alun perin erimittaisiksi suunniteltuja opintopolkuja. Olisi kenkkua, jos järjestelmä olisi niin jäykkä, että opiskelijat pakotettaisiin johonkin tiettyyn muottiin tai että joustavuus opintojen toteutuksessa estettäisiin ”järjestelmäohjatusti”. Epäilemättä joustavuuden salliminen vaikeuttaa ennustemallin algoritmien muodostamista, mutta vain sallimalla joustavuus voidaan tuottaa ennustetietoa, joka palvelee koko ketjua asiakkaasta loppukäyttäjään saakka.

Jotta kuvatut tarpeet voitaisiin täyttää, olemme AnalytiikkaÄly-hankkeen kuvauksessa määritelleet mm. seuraavaa: ”Hankkeen viimeisessä vaiheessa koostetaan järjestämäriippumattomat ja geneeriset määrittelyt yhteisille toiminnanohjauksen kannalta keskeiselle tietosisällölle sekä eHopsia hyödyntävälle ennustemallille”.

Pidetään tämä mielessä, kun viemme hanketta yhdessä eteenpäin.

Kirjoittajat

Harri Eskelinen & Terho Lassila

Lappeenrannan-Lahden teknillinen yliopisto LUT