Blog

Oppimisanalytiikka etäopiskelijoiden ohjauksen työkaluna

LUT-yliopistolla on jo useamman vuoden ajan toteutettu etämaisteriohjelmia, joissa opiskelijat ovat taustaltaan joko ammattikorkeakoulusta valmistuneita insinöörejä tai tekniikan kandidaatteja. Tavoitteena heillä on valmistua diplomi-insinööreiksi joustavasti työn ohessa opiskellen, ja pääosa opinnoista suoritetaan etäopetusmateriaaleja ja etäyhteyksiä hyödyntäen.

Etäopiskeluohjelmissa opiskelevien opiskelijoiden taustat voivat olla hyvinkin erilaisia, osalla heistä edellisistä opinnoista on kulunut jo useita vuosia, kun taas osa saattaa jatkaa DI-opintoja suoraan insinööriopintojensa jatkeeksi, eli katkosta opiskelujen väliin ei tule. Lisäksi suurin osa etäopiskelijoista käy päivätöissä samanaikaisesti opintojensa kanssa, mikä luo ajankäytöllisiä haasteita opiskeluun, vaikka toki ohjelma onkin niin suunniteltu, että työnteko opintojen kanssa yhtä aikaa on mahdollista.

Edellä mainitut seikat ja opiskelijoiden erilaiset taustat asettavat haasteita opiskelijoiden ohjaukseen ja osaltaan myös opintojaksojen suunnitteluun, sillä taustatiedot eivät luonnollisesti ole opettajien eikä ohjaajien tiedossa, vaan tarvitaan oikeudet näiden tietojen käyttöön ennustuksia tehdessä. Eräänlaiseksi haasteeksi voi muodostua myös se, että etäohjelmiin osallistujat suunnittelevat usein tutkintonsa suoritusajan eripituiseksi verrattuna kampuksella läsnäoleviin opiskelijoihin. Tämän seurauksena HOPS saattaa sisältää samat opintojaksot esimerkiksi kahdelle, kolmelle tai jopa neljälle vuodelle rytmitettyinä, mutta silti kyseessä on opiskelijan näkökulmasta ihannetoteutusmalli. Opiskelijakohtaisten valintojen tunnistaminen opintojen viivästymisestä onkin siten yksi AnalytiikkaÄly-sovellukselta vaadittavista lisäominaisuuksista.

Ymmärrettävää toki on, että opiskelijoiden tarkemmat taustatiedot ja esimerkiksi tieto aikaisemmin hankitusta osaamisesta eivät ole yleisesti saatavilla, ja niiden tietojen käyttöön tarvitaan oikeudet. Näin etäopiskelijoiden opintojen ohjaustyöhän osallistuvina toivoisimme näkevämme joskus, jo mahdollisesti lähitulevaisuudessa, esimerkiksi jonkinlaisen ennustemallin/-ratkaisun, joka edesauttaisi opettajia ja ohjaajia ymmärtämään opiskelijoiden etenemistä perustuen heidän erilaisiin taustoihinsa ja ennakko-osaamiseensa.

Aikaisemmin opitun hyödyntäminen tutkinnossa (AHOT) vaatii AnalytiikkaÄly-sovelluksilta erityispiirteitä, jotka tulisi voida rakentaa opintojaksokohtaisesti siten, että opiskelijakohtaisesti voidaan tunnistaa AHOT-prosessiin sopiva osaaminen ja siirtää tieto ennustemalliin. Jos/kun AHOT-mahdollisuuden tunnistaminen on nykyisinkin suhteellisen vaativa prosessi, on se sitä varmasti pyrittäessä hyödyntämään AHOT-tunnistustoimintoja osana ennustemallia. Haasteita siis riittää, mutta toivottavasti näihin kuitenkin löytyy jonkinlaisia ratkaisuja, jos ei nyt vielä AnalytiikkaÄly-hankkeessa, niin mahdollisissa jatkoyhteistyökuvioissa lähitulevaisuudessa.

Toinen tärkeä seikka nyky-yliopistossa yliopiston näkökulmasta on yritysmaailman osaajatarpeiden ymmärtäminen ja sinne tarvittavan tulevaisuuden työvoiman tuottaminen. Olisi tärkeää osata yhdistää koulutustuotteiden sisällöt näihin osaajatarpeiden täyttämisiin, tämä voisi olla mahdollista esimerkiksi tuottamalla oikeanlaisia sivuopintokokonaisuuksia. Tässä onkin yksi suurista haasteista analytiikan näkökulmasta, kuinka osataan ennustaa esimerkiksi viiden vuoden päähän tätä tarvetta?

Katriina Mielonen ja Harri Eskelinen

Lappeenranta-Lahti University of Technology LUT

Blog

Oppimisanalytiikan linjaustyö Turun yliopistossa

Yksi keskeinen tapa edistää oppimisanalytiikan käyttöä omassa korkeakoulussa on oppimisanalytiikan linjauksen (policy) muodostaminen, joka ohjaa ja mahdollistaa oppimisanalytiikan käyttöä organisaatiossa. Jiri Lallimo kirjoitti Oppimisanalytiikan linjauksesta maaliskuun blogikirjoituksessa ja kuvasi kuinka linjauksen tekeminen on edennyt Aalto yliopistossa. Tässä kirjoituksessa kuvaan lyhyesti sitä, kuinka vastaavaa prosessia on edistetty Turun yliopistossa.

Työ Turun yliopistossa aloitettiin Aallon linjausluonnoksen pohjalta. Karkean lokalisoinnin jälkeen luonnos otettiin opintoasiainjohtajan esityksestä yliopiston sisäisen ohjeistuksen tiimin käsiteltäväksi yhteistyössä analytiikan asiantuntijoiden kanssa. Sisäisen ohjeistuksen tiimi on pieni ja monipuolinen työryhmä, joka edustaa erityisesti opintohallintoa ja sisältää myös ylioppilaskunnan edustuksen.

Tavoitteena oli ensi vaiheessa paitsi sovittaa linjaus Turun yliopiston dokumenttien tyyliin, niin myös tuoda se omille toimijoillemme lähestyttävään muotoon. Aallon ja ulkomaisten yliopistojen malli loi hyvän pohjan työlle, mutta toi myös mukanaan haasteita. Monet oppimisanalytiikan asiat voidaan nähdä kansallisesti yhteisinä. Toisaalta taas analytiikan käyttöä ohjaavan dokumentin tulisi rakentua organisaation omista lähtökohdista käsin ja toisen valmiin tekstin taakse kytkeytyvää ajattelua voi olla vaikea tavoittaa. Linjauksesta muodostuu oman organisaationsa ja sen toimijoiden näköinen. Turussa onkin päädytty nimimuotoon Oppimisanalytiikan ohjelma.

Tehtävää kehitystyötä on nyt esitelty yliopiston Koulutusneuvostolle sekä opintohallinnolle ja olemme juuri päättämässä ensimmäisen kommenttikierroksen. Tällä kierrokselle olemme kuulleet erityisesti erilaisia asiantuntijatahoja, kuten tietosuojavastaavaa, analytiikkaan perehtyneitä opettajia sekä opetuksesta vastaavaa vararehtoria. Päivitettyämme ohjelmamme saadun palautteen pohjalta, toteutamme toisen tiedekunnille ja muille yksiköille suunnatun kommentointikierroksen. Sen jälkeen ohjelma tavoitteellisesti saadaan valmiiksi ja yliopiston johdon hyväksyttäväksi syksyn loppuun mennessä.

Selvänä haasteena prosessin aikana on teeman suhteellinen vieraus monille tahoille. Ohjelma pyrkii kuvaamaan sellaista toimintaa, jota ei vielä systemaattisesti harjoiteta. Tämä asettaa ohjelmalle ja sen tekijöille erilaisia kysymyksiä esimerkiksi opetuksen vapauden ja analytiikan systemaattisen hyödyntämisen suhteesta. Tämän vuoksi on ollut keskeistä, että työskentelyssä on ollut ja tulee olemaan mukana niin opiskelija-, opettaja-, kuin hallintoperspektiiviä. Pyrimmekin Aallon tavoin ajattelemaan ohjelmaa myös dynaamisesti, jotta se voi tulevaisuudessa kehittyä yhdessä oppimisanalytiikan käytäntöjen kanssa.

Janne Mikkola

University of Turku

Blog

AnalytiikkaÄly Pedaforumissa

Pedaforum-päivät järjestetään Oulun yliopiston ja Oulun ammattikorkeakoulun yhteistyönä 20.-21.8.2020. Varsinaisten seminaaripäivien lisäksi keskiviikkona 19.8. järjestetään verkostotapaamisia. Tänä vuonna seminaari on maksuton ja se järjestetään täysin verkossa. Päivien teema on Pyörällä päästään – pilveen ja paikalle ja seminaarin ohjelma rakentuu jatkuvan oppimisen, avoimen oppimisen ja digitalisaation sekä kampuskokemuksen, erilaisten oppimisympäristöjen, oppijoiden ja esteettömyyden ympärille. 

Oppimisanalytiikan teema on myös vahvasti esillä päivien aikana, sillä järjestämme keskiviikkona 19.8. oppimisanalytiikan verkostotapaamisen yhteistyössä APOA-hankkeen kanssa ja hankkeellamme on seminaarissa peräti kuusi esitystä/työpajaa! Seminaarin ohjelman löydät kokonaisuudessaan täältä, mutta alta löydät kätevästi kaikki osiot, joissa AnalytiikkaÄly-hankkeemme on mukana.

Keskiviikko 19.8.2020

Oppimisanalytiikan verkostotapaaminen! Oppimisanalytiikan verkostotapaamisessa pureudutaan kahden hankkeen kuulumisiin ja tuloksiin sekä keskustellaan aktiivisesti ja osallistavasti oppimisanalytiikan ajankohtaisista tuulista.

Verkostotapaamisen ohjelma:

10.00 Tervetuloa!

10.05-12.00 Hankkeiden kuulumiset

AnalytiikkaÄly: Työkaluja oppimisanalytiikan käyttöönoton tueksi ja kurkistus tuleviin pilotteihin

APOA: Kokemuksia piloteinneista ja suositukset oppimisanalytiikan käyttöönottoon

12.00-13.00 Lounastauko

13.00-14.00 Analytiikkajaosto: oppimisanalytiikan kansalliset kuulumiset ja oppimisanalytiikan viitekehys

14.00-15.00 Työpajatyöskentelyä:  Miten tästä eteenpäin? Miten oppimisanalytiikan verkosto organisoituu? Miten oppimisanalytiikkaa voidaan edistää hankkeiden päättymisen jälkeen?

Verkostotapaaminen järjestetään Zoom. Suosittelemme tietoturvasyistä lataamaan Zoom-sovelluksen uusimman version laitteille jo etukäteen. Selaimista parhaiten Zoomia tukee Google Chrome. Verkostotapaamisessa käytämme odotusaulaa, joten liitythän tapaamiseen omalla nimelläsi. Selkokieliset Zoomin käyttöohjeet löydät täältä.

Pääset lukemaan esityksien ja työpajojen abstraktit klikkaamalla esitystä.

Torstai 20.8.2020

Rinnakkaissessio 1 klo: 14-15.30 Workshop: Opiskelija AnalytiikkaÄly dashboard hands-on

Rinnakkaissessio 1 klo:14-15.30 Workshop: Työkaluja ja toimintamalleja oppimisanalytiikkatiedon käytön tueksi: juridiikka ja johtaminen

Rinnakkaissessio 1 klo:15-15.30 Listen & Learn: Opintopolku palvelupolkuna AnalytiikkaÄly-hankkeessa

Perjantai 21.8.2020

Rinnakkaissessio 2 klo: 10.15-11.45 Workshop, Opintopolku blueprint ja oppimisanalytiikan hyödyntäminen opiskelun tukena

Rinnakkaissessio 2 klo: 10.45-11.15 Listen & Learn: Kohti oppimisanalytiikan käyttöä: omaopettajien kokemus roolistaan ja oppimisanalytiikan työpöydän käytöstä ohjauksessa

Rinnakkaissessio 3 klo:12.30-13.00 Ideas and practices: Data-driven approach to developing support processes for learning, teaching and management in higher education: Modeling factors affecting study success from large-scale study-related data

Nähdään Pedaforumissa!

Blog

Can analytics provide support and solutions in challenging situations?

The coronavirus has forced several educational institutions from basic education to higher education to take quite a digital leap in recent days. On a very fast schedule we switched to distance learning and working. Some higher education institutions have reported transferring to online learning in just a few weeks instead of previously planned months. Common worries of teachers and administrators in this situation are securing the continuation of the learning process, as well as ensuring that learning outcomes are achieved in digital environments. At the same time learning in digital environments from home requires better self-management skills from students as learning opportunities are more flexible and less supervised. Students who previously used help and direction from learning support may also have lost some of the resources.  

In these challenging times learning analytics can be utilized to become eyes and ears of a teacher and to support students’ learning process. By tracking students’ actions in learning environments and providing meaningful summaries and visualization to teachers, learning analytics can help teachers keep a constant overview of what is happening in the digital classroom, which students are progressing with their assignments and which ones need more help and personal attention from the teacher.   

Students on the other hand may benefit from more direct learning analytics support in a form of content suggestions and reminders to facilitate time management. Learning analytics may help keeping track of the study path, providing a track of completed studies and giving a structured overview of what courses still have to be mastered. All of the mentioned earlier could provide support and a sense of structure needed in one’s studies in challenging situations.   

Just as everyone else, our project has also adapted to the state of emergency in the country. Project meetings are now as well happening virtually so project partners can still collaborate successfully and do their work remotely from home. As we planned to have piloting sessions this spring, they are now transferred to purely online piloting and we will try to reach students online so they could try out and evaluate first the simulation and then the student dashboard as well. Teacher tutor piloting has also moved online, as teacher tutors now have instructions to carry out tutoring sessions with students using digital communication means.  

With our project team we are very happy to help create and develop tools and ways to utilize learning analytics that could benefit students and teachers in their everyday work and in extraordinary circumstances. Although the situation is hard for all educational communities there are resources and opportunities that teachers, students and researchers can utilize to succeed in their endeavors.   

Egle Gedrimiene ja Henna Määttä

University of Oulu

Blog

Learning analytics webinars coming soon!

During 2020, the AnalyticsAI project will implement three webinars on learning analytics. The purpose of the webinars is to share the results of the project with a wider audience and to bring out different perspectives related to learning analytics. The webinars will be held in Zoom, and you can find the registration links below. Come along to listen and discuss!

Registration for webinars: bit.ly/AIwebinars

More information about the webinars:

Privacy Policy, Risk Assessment and Impact Assessment

Tommi Haapaniemi (UEF), Meri Sariola (UEF), Jiri Lallimo (Aalto), Viivi Väisänen (UH)

As part of AnalyticAI work on the legal aspects of learning analytics, Viivi Väisänen's presentation deals with data protection principles and impact assessment through Aalto University's case study. The presentation shows the main conclusions of the case study and, as a concrete example, an impact assessment of the Moodle drop-out rate. The case study has also served the work on the AnalyticsAI policy design.

Under the leadership of the University of Eastern Finland, a simplified risk assessment model for the processing of personal data has been developed in the project, which can be applied to different use cases of learning analytics. The presentation introduces the risk assessment model and the key risks and perspectives on the implementation of learning analytics that need to be considered on the basis of the Data Protection Regulation.

AnalyticsAI app, Student Dashboard

Heikki Hyyrö ja Sami-Santeri Svensk (TU)

Under the leadership of the University of Tampere, the project has developed an application that utilizes learning analytics for the use of students, instructors and those responsible for education. The presentation concretely addresses the key elements of the application and in particular how the application can support students with the smooth progression of their studies.

Study path as a service path - Perspectives on analytics

Titta Jylkäs ja Essi Kuure (ULapland)

What development opportunities can we identify when we look at a student’s study path as a service path? The presentation opens up a people-oriented approach to learning analytics through the basics and methods of service design. Through the identification of the student's service path, the benefits of learning analytics can be targetted to studies in a timely manner and thus provide the student with concrete benefits for the promotion of studies. Through service design and learning analytics, we can outline the study path as a whole and offer students the value of a targeted service.